[1] Celermajer DS, Chow CK, Marijon E, et al. Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection [J]. J Am Coll Cardiol, 2012, 60(14): 1207-1216. doi: 10.1016/j.jacc.2012.03.074
[2] Haidong Wang, Mohsen Naghavi, Christine Allen, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015 [J]. Lancet (London, England), 2016, 388(10053): 1459-1544. doi: 10.1016/S0140-6736(16)31012-1
[3] Yusuf S, Reddy S, Ounpuu S, et al. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization [J]. Circulation, 2001, 104(22): 2746-2753. doi: 10.1161/hc4601.099487
[4] Joseph P, Leong D, McKee M, et al. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors [J]. Circ Res, 2017, 121(6): 677-694. doi: 10.1161/CIRCRESAHA.117.308903
[5] Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond [J]. Circulation, 2010, 121(4): 586-613. doi: 10.1161/CIRCULATIONAHA.109.192703
[6] Roth GA, Forouzanfar MH, Moran AE, et al. Demographic and epidemiologic drivers of global cardiovascular mortality [J]. N Engl J Med, 2015, 372(14): 1333-1341. doi: 10.1056/NEJMoa1406656
[7] Centers for Disease Control and Prevention (CDC). Decline in deaths from heart disease and stroke--United States, 1900-1999 [J]. MMWR Morb Mortal Wkly Rep, 1999, 48(30): 649-656.
[8] Fares MA. Introduction: challenges and advances in cardiovascular disease [J]. Cleve Clin J Med, 2017, 84(12 Suppl 3): 11. doi: 10.3949/ccjm.84.s3.01
[9] Zhang J. Analysis on research and development of global cardiovascular drugs in the past 6 years [J]. J China Pharm Univ, 2018, 49(06): 760-765.
[10] Wang CH, Chang L, Meng N, et al. An analysis of the pharmacological action and clinical application of Huangqi [J]. Clin J Chin Med, 2018, 10(35): 104-107.
[11] Shan H, Zheng X, Li M. The effects of Astragalus membranaceus active extracts on autophagy-related diseases [J]. Int J Mol Sci, 2019, 20(8): 1904.
[12] Li X, Qu L, Dong Y, et al. A review of recent research progress on the astragalus genus [J]. Molecules, 2014, 19(11): 18850-18880. doi: 10.3390/molecules191118850
[13] Nijveldt RJ, van Nood E, van Hoorn DE, et al. Flavonoids: a review of probable mechanisms of action and potential applications [J]. Am J Clin Nutr, 2001, 74(4): 418-425. doi: 10.1093/ajcn/74.4.418
[14] Ahmed M, Eun JB. Flavonoids in fruits and vegetables after thermal and nonthermal processing: A review [J]. Crit Rev Food Sci Nutr, 2018, 58(18): 3159-3188. doi: 10.1080/10408398.2017.1353480
[15] Liu JL, Yu HD, Liang YN. Density functional theory investigation on antioxidant activity of flavonoids from astragalus [J]. Chem & Bioeng, 2019, 36(01): 36-40.
[16] Yu L, Wang ZB, Wang QH, et al. Research progress on pharmacological effects of flavonoids in astragali radix [J]. Inf Tradit Chin Med, 2018, 35(02): 104-108.
[17] Hu G, Siu SO, Li S, et al. Metabolism of calycosin, an isoflavone from astragali radix, in zebrafish larvae [J]. Xenobiotica, 2012, 42(3): 294-303. doi: 10.3109/00498254.2011.617015
[18] Tian J, Duan YX, Bei CY, et al. Calycosin induces apoptosis by upregulation of RASD1 in human breast cancer cells MCF-7 [J]. Horm Metab Res, 2013, 45(8): 593-598. doi: 10.1055/s-0033-1341510
[19] Gao J, Liu ZJ, Chen T, et al. Pharmaceutical properties of calycosin, the major bioactive isoflavonoid in the dry root extract of radix astragali [J]. Pharm Biol, 2014, 52(9): 1217-1222. doi: 10.3109/13880209.2013.879188
[20] Cheng CC, Chen YH, Chang WL, et al. Phytoestrogen bavachin mediates anti-inflammation targeting Ikappa B kinase-I kappaB alpha-NF-kappaB signaling pathway in chondrocytes in vitro [J]. Eur J Pharmacol, 2010, 636(1-3): 181-188. doi: 10.1016/j.ejphar.2010.03.031
[21] Duan X, Meng Q, Wang C, et al. Effects of calycosin against high-fat diet-induced nonalcoholic fatty liver disease in mice [J]. J Gastroenterol Hepatol, 2018, 33(2): 533-542. doi: 10.1111/jgh.13884
[22] Guo C, Ma Y, Ma S, et al. The role of TRPC6 in the neuroprotection of calycosin against cerebral ischemic injury [J]. Sci Rep, 2017, 7(1): 3039. doi: 10.1038/s41598-017-03404-6
[23] van der Pol A, van Gilst WH, Voors AA, et al. Treating oxidative stress in heart failure: past, present and future [J]. Eur J Heart Fail, 2019, 21(4): 425-435. doi: 10.1002/ejhf.1320
[24] Siti HN, Kamisah Y, Kamsiah J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review) [J]. Vascul pharmacol, 2015, 71: 40-56. doi: 10.1016/j.vph.2015.03.005
[25] Bertero E, Maack C. Calcium signaling and reactive oxygen species in mitochondria [J]. Circ Res, 2018, 122(10): 1460-1478. doi: 10.1161/CIRCRESAHA.118.310082
[26] Glancy B, Willis WT, Chess DJ, et al. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria [J]. Biochemistry, 2013, 52(16): 2793-2809. doi: 10.1021/bi3015983
[27] Nickel AG, von Hardenberg A, Hohl M, et al. Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure [J]. Cell Metab, 2015, 22(3): 472-484. doi: 10.1016/j.cmet.2015.07.008
[28] Songbo M, Lang H, Xinyong C, et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity [J]. Toxicol Lett, 2019, 307: 41-48. doi: 10.1016/j.toxlet.2019.02.013
[29] Munzel T, Camici GG, Maack C, et al. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series [J]. J Am Coll Cardiol, 2017, 70(2): 212-229. doi: 10.1016/j.jacc.2017.05.035
[30] Gu X, Fang T, Kang P, et al. Effect of ALDH2 on high glucose-induced cardiac fibroblast oxidative stress, apoptosis, and fibrosis [J]. Oxid Med Cell Longev, 2017, 2017: 9257967.
[31] Rizzi E, Ceron CS, Guimaraes DA, et al. Temporal changes in cardiac matrix metalloproteinase activity, oxidative stress, and TGF-beta in renovascular hypertension-induced cardiac hypertrophy [J]. Exp Mol Pathol, 2013, 94(1): 1-9.
[32] Yu EP, Bennett MR. Mitochondrial DNA damage and atherosclerosis [J]. Trends Endocrinol Metab, 2014, 25(9): 481-487. doi: 10.1016/j.tem.2014.06.008
[33] Faria A, Persaud SJ. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential [J]. Pharmacol Ther, 2017, 172: 50-62.
[34] Ayoub KF, Pothineni NVK, Rutland J, et al. Immunity, inflammation, and oxidative stress in heart failure: emerging molecular targets [J]. Cardiovasc Drugs Ther, 2017, 31(5-6): 593-608. doi: 10.1007/s10557-017-6752-z
[35] Wang JX, Gao J, Ding SL, et al. Oxidative modification of miR-184 enables it to target bcl-xL and bcl-w [J]. Mol Cell, 2015, 59(1): 50-61. doi: 10.1016/j.molcel.2015.05.003
[36] Pinti MV, Hathaway QA, Hollander JM. Role of microRNA in metabolic shift during heart failure [J]. Am J Physiol Heart Circ Physiol, 2017, 312(1): H33-45. doi: 10.1152/ajpheart.00341.2016
[37] Magenta A, Greco S, Gaetano C, et al. Oxidative stress and microRNAs in vascular diseases [J]. Int J Mol Sci, 2013, 14(9): 17319-17346. doi: 10.3390/ijms140917319
[38] Lim HY, Wang W, Chen J, et al. ROS regulate cardiac function via a distinct paracrine mechanism [J]. Cell Rep, 2014, 7(1): 35-44. doi: 10.1016/j.celrep.2014.02.029
[39] Bian YY, Li P. Study on scavenging activities for superoxide anion radicals and structure-activity relationship of flavonoids from Astragalus membranaceus (Fish.) Bge. var. mongholicus (Bge.) Hsiao [J]. Chin Pharmacol J, 2008, 4: 256-259.
[40] Wen XD, Li P, Qian ZM, et al. Interaction between three antioxygenic micromolecules and bovine serum albumin [J]. Acta Chimica Sinica, 2007, 5: 421-429.
[41] Guo Q, Rimbach G, Moini H, et al. ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids [J]. Toxicology, 2002, 179(1-2): 171-180. doi: 10.1016/S0300-483X(02)00241-X
[42] Li J, Han L, Ma YF, et al. Inhibiting effects of three components of Astragalus membranaceus on oxidative stress in Chang Liver cells [J]. Chin J Chin Mater Med, 2015, 40(2): 318-323.
[43] Song L, Li X, Bai XX, et al. Calycosin improves cognitive function in a transgenic mouse model of Alzheimer’s disease by activating the protein kinase C pathway [J]. Neural Regen Res, 2017, 12(11): 1870-1876. doi: 10.4103/1673-5374.219049
[44] Li JJ, Cui GZ, Wang L, et al. Protective effects of calycosin on oxygen glucose deprivation-induced cell injury in H9c2 cell [J]. Pharm Clini Chin Mater Medica, 2014, 30(05): 32-35.
[45] Dominic EA, Ramezani A, Anker SD, et al. Mitochondrial cytopathies and cardiovascular disease [J]. Heart, 2014, 100(8): 611-618.
[46] Liu B, Zhang J, Liu W, et al. Calycosin inhibits oxidative stress-induced cardiomyocyte apoptosis via activating estrogen receptor-alpha/beta [J]. Bioorg Med Chem Lett, 2016, 26(1): 181-185.
[47] Zhu H, Zhang Y, Ye G, et al. In vivo and in vitro antiviral activities of calycosin-7-O-beta-D-glucopyranoside against coxsackie virus B3 [J]. Biol Pharm Bull, 2009, 32(1): 68-73.
[48] Moe GW, Marin-Garcia J. Role of cell death in the progression of heart failure [J]. Heart Fail Rev, 2016, 21(2): 157-167. doi: 10.1007/s10741-016-9532-0
[49] Ferrari R, Balla C, Malagu M, et al. Reperfusion damage-a story of success, failure, and hope [J]. Circ J, 2017, 81(2): 131-141. doi: 10.1253/circj.CJ-16-1124
[50] Yang Q, He GW, Underwood MJ, et al. Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection [J]. Am J Transl Res, 2016, 8(2): 765-777.
[51] Junqing G, Tao C, Huigen J, et al. Effect of calycosin on left ventricular ejection fraction and angiogenesis in rat models with myocardial infarction [J]. J Tradit Chin Med, 2015, 35(2): 160-167. doi: 10.1016/S0254-6272(15)30023-6
[52] Ren M, Wang X, Du G, et al. Calycosin-7-O-beta-D-glucoside attenuates ischemia reperfusion injury in vivo via activation of the PI3K/Akt pathway [J]. Mol Med Rep, 2016, 13(1): 633-640. doi: 10.3892/mmr.2015.4611
[53] Cheng Y, Zhao J, Tse HF, et al. Plant natural products calycosin and gallic acid synergistically attenuate neutrophil infiltration and subsequent injury in isoproterenol-induced myocardial infarction: a possible role for leukotriene B4 12-hydroxydehydrogenase? [J]. Oxid Med Cell Longev, 2015, 2015: 434052.
[54] Li CJ, Xing XX, Zhou ZC, et al. Study of protective mechanism of calycosinon on myocardial ischemia-reperfusion injury in rats [J]. Tianjin J Tradit Chin Med, 2017, 34(05): 341-344.
[55] Bao LT. The experimental study of calycosin's effect on cardiac hypertrophy in mice [D]. Wuhan: Wuhan University, 2017.
[56] Huang J, Cheng CF, Li HB, et al. The potential protect effect and mechanism of calycosin on cardiac hypertrophy in rats [J]. The J Pract Med, 2018, 34(24): 4060-4063.
[57] Tang JY, Li S, Li ZH, et al. Calycosin promotes angiogenesis involving estrogen receptor and mitogen-activated protein kinase (MAPK) signaling pathway in zebrafish and HUVEC [J]. PLoS One, 2010, 5(7): e11822. doi: 10.1371/journal.pone.0011822
[58] Wu XL, Wang YY, Cheng J, et al. Calcium channel blocking activity of calycosin, a major active component of Astragali radix, on rat aorta [J]. Acta pharmacol Sin, 2006, 27(8): 1007-1012. doi: 10.1111/j.1745-7254.2006.00349.x
[59] Tseng HH, Vong CT, Leung GP, et al. Calycosin and formononetin induce endothelium-dependent vasodilation by the activation of large-conductance Ca(2+)-activated K(+) channels (BKCa) [J]. Evid Based Complement Alternat Med, 20165272531.
[60] Jiang YH, Sun W, Li W, et al. Calycosin-7-O-beta-D-glucoside promotes oxidative stress-induced cytoskeleton reorganization through integrin-linked kinase signaling pathway in vascular endothelial cells [J]. BMC complement Altern Med, 2015, 15: 315. doi: 10.1186/s12906-015-0839-5
[61] Li S, Dang YY, Oi Lam Che G, et al. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation [J]. Toxicol Appl Pharmacol, 2014, 280(3): 408-420. doi: 10.1016/j.taap.2014.09.005
[62] Xu YH, Xiong J, Wang SS, et al. Calycosin entered HUVECs and ameliorated AGEs-promoted cell apoptosis via the Bcl-2 pathway [J]. J Nat Med, 2014, 68(1): 163-172. doi: 10.1007/s11418-013-0787-7
[63] Xu Y, Feng L, Wang S, et al. Phytoestrogen calycosin-7-O-beta-D-glucopyranoside ameliorates advanced glycation end products-induced HUVEC damage [J]. J Cell Biochem, 2011, 112(10): 2953-2965. doi: 10.1002/jcb.23212
[64] Li XL, Song RX, Lin X, et al. Comparison of calycosin and irbesartan for their impact on renin angiotensin system in human umbilical vein endothelial cell [J]. Minerva Med, 2015, 106(1): 9-16.
[65] Tang BS. Inhibiting effects of calycosin on expression of ICAM-1 in vascular endothelial cell and its receptor LFA-1 [D]. Lanzhou: Lanzhou University, 2011.
[66] Wang XT. Effect of calycosin on the synthesis of PGI2 and TXA2 in vascular endothelial cells [D]. Lanzhou: Lanzhou University, 2011.
[67] Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis [J]. Circ Res, 2016, 119(1): 91-112. doi: 10.1161/CIRCRESAHA.116.303577
[68] Zhang YY, Tan RZ, Zhang XQ, et al. Calycosin ameliorates diabetes-induced renal inflammation via the NF-kappaB pathway in vitro and in vivo [J]. Med Sci Monit, 2019, 25: 1671-1678.
[69] Quan GH, Wang H, Cao J, et al. Calycosin suppresses RANKL-mediated osteoclast-ogenesis through inhibition of MAPKs and NF-kappaB [J]. Int J Mol Sci, 2015, 16(12): 29496-29507. doi: 10.3390/ijms161226179
[70] Dong L, Yin L, Chen R, et al. Anti-inflammatory effect of Calycosin glycoside on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells [J]. Gene, 2018, 675: 91-101.
[71] Jaremo P, Eriksson-Franzen M, Milovanovic M. Platelets, gender and acute cerebral infarction [J]. J Transl Med, 2015, 13: 267. doi: 10.1186/s12967-015-0630-x
[72] Russo I, Penna C, Musso T, et al. Platelets, diabetes and myocardial ischemia/reperfusion injury [J]. Cardiovasc Diabetol, 2017, 16(1): 71. doi: 10.1186/s12933-017-0550-6
[73] Liao F, Yu A, Yu J, et al. Identification of active ingredients mediating anti-platelet aggregation effects of BuyangHuanwu decoction using a platelet binding assay, solid phase extraction, and HPLC-MS/MS [J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1092: 320-327. doi: 10.1016/j.jchromb.2018.06.027
[74] Liu H, Liang JP, Li PB, et al. Core bioactive components promoting blood circulation in the traditional Chinese medicine compound xueshuantong capsule (CXC) based on the relevance analysis between chemical HPLC fingerprint and in vivo biological effects [J]. PLoS One, 2014, 9(11): e112675. doi: 10.1371/journal.pone.0112675
[75] Dong TT, Zhao KJ, Gao QT, et al. Chemical and biological assessment of a chinese herbal decoction containing radix Astragali and radix Angelicae Sinensis: determination of drug ratio in having optimized properties [J]. J Agric Food Chem, 2006, 54(7): 2767-2774. doi: 10.1021/jf053163l
[76] Sheng S, Wang J, Wang L, et al. Network pharmacology analyses of the antithrombotic pharmacological mechanism of Fufang Xueshuantong Capsule with experimental support using disseminated intravascular coagulation rats [J]. J Ethnopharmacol, 2014, 154(3): 735-744. doi: 10.1016/j.jep.2014.04.048
[77] Yu DH, Bao YM, Wei CL, et al. Studies of chemical constituents and their antioxidant activities from Astragalus mongholicus Bunge [J]. Biomed Environ Sci, 2005, 18(5): 297-301.
[78] Li S, Wang Y, Feng C, et al. Calycosin inhibits the migration and invasion of human breast cancer cells by down-regulation of Foxp3 expression [J]. Cell Physiol Biochem, 2017, 44(5): 1775-1784. doi: 10.1159/000485784