• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
DONG Hui, YAN Guang-Li, HAN Ying, SUN Hui, ZHANG Ai-Hua, LI Xian-Na, WANG Xi-Jun. UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang[J]. 中国天然药物, 2015, 13(9): 687-698.
引用本文: DONG Hui, YAN Guang-Li, HAN Ying, SUN Hui, ZHANG Ai-Hua, LI Xian-Na, WANG Xi-Jun. UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang[J]. 中国天然药物, 2015, 13(9): 687-698.
DONG Hui, YAN Guang-Li, HAN Ying, SUN Hui, ZHANG Ai-Hua, LI Xian-Na, WANG Xi-Jun. UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang[J]. Chinese Journal of Natural Medicines, 2015, 13(9): 687-698.
Citation: DONG Hui, YAN Guang-Li, HAN Ying, SUN Hui, ZHANG Ai-Hua, LI Xian-Na, WANG Xi-Jun. UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang[J]. Chinese Journal of Natural Medicines, 2015, 13(9): 687-698.

UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang

UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang

  • 摘要: Chuanwu (CW), a famous traditional Chinese medicine (TCM) from the mother roots of Aconitum carmichaelii Debx.. (Ranunculaceae), has been used for the treatment of various diseases. Unfortunately, its toxicity is frequently reported because of its narrow therapeutic window. In the present study, a metabolomic method was performed to characterize the phenotypically biochemical perturbations and potential mechanisms of CW-induced toxicity. Meanwhile, the expression level of toxicity biomarkers in the urine were analyzed to evaluate the detoxification by combination with Gancao (Radix Glyeyrrhizae, CG), Baishao (Radix Paeoniae Alba, CS) and Ganjiang (Rhizoma Zingiberis, CJ), which were screened from classical TCM prescriptions. Urinary metabolomics was performed by UPLC-Q-TOF-HDMS, and the mass spectra signals of the detected metabolites were systematically analyzed using pattern recognition methods. As a result, seventeen biomarkers associated with CW toxicity were identified, which were associated with pentose and glucuronate interconversions, alanine, aspartate, and glutamate metabolism, among others. The expression levels of most toxicity biomarkers were effectively modulated towards the normal range by the compatibility drugs. It indicated that the three compatibility drugs could effectively detoxify CW. In summary, our work demonstrated that metabolomics was vitally significant to evaluation of toxicity and finding detoxification methods for TCM.

     

    Abstract: Chuanwu (CW), a famous traditional Chinese medicine (TCM) from the mother roots of Aconitum carmichaelii Debx.. (Ranunculaceae), has been used for the treatment of various diseases. Unfortunately, its toxicity is frequently reported because of its narrow therapeutic window. In the present study, a metabolomic method was performed to characterize the phenotypically biochemical perturbations and potential mechanisms of CW-induced toxicity. Meanwhile, the expression level of toxicity biomarkers in the urine were analyzed to evaluate the detoxification by combination with Gancao (Radix Glyeyrrhizae, CG), Baishao (Radix Paeoniae Alba, CS) and Ganjiang (Rhizoma Zingiberis, CJ), which were screened from classical TCM prescriptions. Urinary metabolomics was performed by UPLC-Q-TOF-HDMS, and the mass spectra signals of the detected metabolites were systematically analyzed using pattern recognition methods. As a result, seventeen biomarkers associated with CW toxicity were identified, which were associated with pentose and glucuronate interconversions, alanine, aspartate, and glutamate metabolism, among others. The expression levels of most toxicity biomarkers were effectively modulated towards the normal range by the compatibility drugs. It indicated that the three compatibility drugs could effectively detoxify CW. In summary, our work demonstrated that metabolomics was vitally significant to evaluation of toxicity and finding detoxification methods for TCM.

     

/

返回文章
返回