• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
CHEN Shao-Jun. Drug-target networks for Tanshinone IIA identified by data mining[J]. 中国天然药物, 2015, 13(10): 751-759.
引用本文: CHEN Shao-Jun. Drug-target networks for Tanshinone IIA identified by data mining[J]. 中国天然药物, 2015, 13(10): 751-759.
CHEN Shao-Jun. Drug-target networks for Tanshinone IIA identified by data mining[J]. Chinese Journal of Natural Medicines, 2015, 13(10): 751-759.
Citation: CHEN Shao-Jun. Drug-target networks for Tanshinone IIA identified by data mining[J]. Chinese Journal of Natural Medicines, 2015, 13(10): 751-759.

Drug-target networks for Tanshinone IIA identified by data mining

Drug-target networks for Tanshinone IIA identified by data mining

  • 摘要: Tanshinone IIA is a pharmacologically active compound isolated from Danshen (Salvia miltiorrhiza), a traditional Chinese herbal medicine for the management of cardiac diseases and other disorders. But its underlying molecular mechanisms of action are still unclear. The present investigation utilized a data mining approach based on network pharmacology to uncover the potential protein targets of Tanshinone IIA. Network pharmacology, an integrated multidisciplinary study, incorporates systems biology, network analysis, connectivity, redundancy, and pleiotropy, providing powerful new tools and insights into elucidating the fine details of drug-target interactions. In the present study, two separate drug-target networks for Tanshinone IIA were constructed using the Agilent Literature Search (ALS) and STITCH (search tool for interactions of chemicals) methods. Analysis of the ALS-constructed network revealed a target network with a scale-free topology and five top nodes (protein targets) corresponding to Fos, Jun, Src, phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), and mitogen-activated protein kinase kinase 1 (MAP2K1), whereas analysis of the STITCH-constructed network revealed three top nodes corresponding to cytochrome P450 3A4 (CYP3A4), cytochrome P450 A1 (CYP1A1), and nuclear factor kappa B1 (NFB1). The discrepancies were probably due to the differences in the divergent computer mining tools and databases employed by the two methods. However, it is conceivable that all eight proteins mediate important biological functions of Tanshinone IIA, contributing to its overall drug-target network. In conclusion, the current results may assist in developing a comprehensive understanding of the molecular mechanisms and signaling pathways of in a simple, compact, and visual manner.

     

    Abstract: Tanshinone IIA is a pharmacologically active compound isolated from Danshen (Salvia miltiorrhiza), a traditional Chinese herbal medicine for the management of cardiac diseases and other disorders. But its underlying molecular mechanisms of action are still unclear. The present investigation utilized a data mining approach based on network pharmacology to uncover the potential protein targets of Tanshinone IIA. Network pharmacology, an integrated multidisciplinary study, incorporates systems biology, network analysis, connectivity, redundancy, and pleiotropy, providing powerful new tools and insights into elucidating the fine details of drug-target interactions. In the present study, two separate drug-target networks for Tanshinone IIA were constructed using the Agilent Literature Search (ALS) and STITCH (search tool for interactions of chemicals) methods. Analysis of the ALS-constructed network revealed a target network with a scale-free topology and five top nodes (protein targets) corresponding to Fos, Jun, Src, phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), and mitogen-activated protein kinase kinase 1 (MAP2K1), whereas analysis of the STITCH-constructed network revealed three top nodes corresponding to cytochrome P450 3A4 (CYP3A4), cytochrome P450 A1 (CYP1A1), and nuclear factor kappa B1 (NFB1). The discrepancies were probably due to the differences in the divergent computer mining tools and databases employed by the two methods. However, it is conceivable that all eight proteins mediate important biological functions of Tanshinone IIA, contributing to its overall drug-target network. In conclusion, the current results may assist in developing a comprehensive understanding of the molecular mechanisms and signaling pathways of in a simple, compact, and visual manner.

     

/

返回文章
返回