• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
HUO Zhi-Peng, FENG Xin-Chi, WANG Yu, TIAN Yu-Ting, QIU Feng. Sulfite as the substrate of C-sulfonate metabolism of α, β-unsaturated carbonyl containing andrographolide: analysis of sulfite in rats’ intestinal tract and the reaction kinetics of andrographolide with sulfite [J].Chin J Nat Med, 2021, 19(9): 706-712. doi: 10.1016/S1875-5364(21)60094-8
Citation: HUO Zhi-Peng, FENG Xin-Chi, WANG Yu, TIAN Yu-Ting, QIU Feng. Sulfite as the substrate of C-sulfonate metabolism of α, β-unsaturated carbonyl containing andrographolide: analysis of sulfite in rats’ intestinal tract and the reaction kinetics of andrographolide with sulfite [J].Chin J Nat Med, 2021, 19(9): 706-712. doi: 10.1016/S1875-5364(21)60094-8

Sulfite as the substrate of C-sulfonate metabolism of α, β-unsaturated carbonyl containing andrographolide: analysis of sulfite in rats’ intestinal tract and the reaction kinetics of andrographolide with sulfite

  • Abstract: One-sixth of the currently known natural products contain α, β-unsaturated carbonyl groups. Our previous studies reported a rare C-sulfonate metabolic pathway. Sulfonate groups were linked to the β-carbon of α, β-unsaturated carbonyl-based natural compounds through this pathway. However, the mechanism of this type of metabolism is still not fully understood, especially whether it is formed through enzyme-mediated biotransformation or direct sulfite addition. In this work, the enzyme-mediated and non-enzymatic pathways were studied. First, the sulfite content in rat intestine was determined by LC-MS/MS. The results showed that the amount of sulfite in rat intestinal contents was from 41.5 to 383 μg∙g−1, whereas the amount of sulfite in rat feed was lower than the lower limit of quantitation (20 μg∙g−1). Second, the reaction kinetics of sulfite-andrographolide reactions in phosphate buffer solutions (pH 6−8) was studied. The half-lives of andrographolide ranged from minutes to hours. This was suggested that the C-sulfonate reaction of andrographolide was very fast. Third, the C-sulfonate metabolites of andrographolide were both detected when andrographolide and L-cysteine-S-conjugate andrographolide were incubated with the rat small intestine contents or sulfite, indicating that the sulfite amount in rat intestine contents was high enough to react with andrographolide, which assisted a significant portion of andrographolide metabolism. Finally, the comparison of andrographolide metabolite profiles among liver homogenate (with NADPH), liver S9 (with NADPH), small intestine contents homogenate (with no NADPH), and sulfite solution incubations showed that the C-sulfonate metabolites were predominantly generated in the intestinal tract by non-enzymatic pathway. In summary, sulfite can serve as a substrate for C-sulfonate metabolism, and these results identified non-enzymatically nucleophilic addition as the potential mechanism for C-sulfonate metabolism of compounds containing α, β-unsaturated carbonyl moiety.

     

/

返回文章
返回