• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
FU Yao, ZHOU Ji-Dong, SANG Xiao-Yu, ZHAO Qi-Tao. Gualou-Xiebai-Banxia decoction protects against type II diabetes with acute myocardial ischemia by attenuating oxidative stress and apoptosis via PI3K/Akt/eNOS signaling [J]. Chin J Nat Med, 2021, 19(3): 161-169. doi: 10.1016/S1875-5364(21)60017-1
Citation: FU Yao, ZHOU Ji-Dong, SANG Xiao-Yu, ZHAO Qi-Tao. Gualou-Xiebai-Banxia decoction protects against type II diabetes with acute myocardial ischemia by attenuating oxidative stress and apoptosis via PI3K/Akt/eNOS signaling [J]. Chin J Nat Med, 2021, 19(3): 161-169. doi: 10.1016/S1875-5364(21)60017-1

Gualou-Xiebai-Banxia decoction protects against type II diabetes with acute myocardial ischemia by attenuating oxidative stress and apoptosis via PI3K/Akt/eNOS signaling

  • Abstract: Gualou-Xiebai-Banxia decoction has a long history of medical use for treating cardiovascular diseases in China. In this study, we investigated the protective effect and underlying mechanisms GXB in type II diabetes with acute myocardial ischemia (T2DM-AMI) rats. We hypothesized that GXB may display its protective effect on T2DM-AMI by reducing endothelial progenitor cells (EPCs) apoptosis via activating PI3K (phosphatidyl inositol 3-kinase)/Akt (serine/threonine protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling. Rats were challenged with a high-fat diet and intraperitoneal injection of streptozotocin to induce a model of type II diabetes mellitus (T2DM) and coronary ligation to induce acute myocardial infarction (AMI). Changes in metabolites were assessed via enzyme-linked immunoassay and biochemical examination. The number and apoptosis rate of EPCs in peripheral blood were detected by flow cytometry. Target mRNAs and proteins in EPCs were analyzed by RT-PCR and Western blot analysis. The results demonstrated that GXB treatment decreased T2DM-AMI-associated changes in plasma fasting blood glucose, muscular enzymes, and blood lipids, and reduced oxidative stress. Furthermore, EPC apoptosis was increased in T2DM-AMI rats and was associated with decreased mRNA and protein levels of PI3K, Akt, and eNOS compared to the controls. Conversely, T2DM-AMI rats treated with GXB exhibited more circulating EPCs and downregulated levels of cell apoptosis, combined with increased mRNA and protein levels of PI3K, Akt, and eNOS compared to those of untreated T2DM-AMI rats. Our study showed that GXB treatment mitigated EPC apoptosis and promoted PI3K/Akt/eNOS signaling in T2DM-AMI rats.

     

/

返回文章
返回