• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
CUI Ying-Xian, XU Zhi-Chao, CHEN Xin-Lian, NIE Li-Ping, WU Li-Wei, WANG Yu, SONG Jing-Yuan, YAO Hui. Genome-wide identification of abscisic acid (ABA) receptor pyrabactin resistance 1-like protein (PYL) family members and expression analysis of PYL genes in response to different concentrations of ABA stress in Glycyrrhiza uralensis [J]. Chin J Nat Med, 2020, 18(8): 606-611. doi: 10.1016/S1875-5364(20)30072-8
Citation: CUI Ying-Xian, XU Zhi-Chao, CHEN Xin-Lian, NIE Li-Ping, WU Li-Wei, WANG Yu, SONG Jing-Yuan, YAO Hui. Genome-wide identification of abscisic acid (ABA) receptor pyrabactin resistance 1-like protein (PYL) family members and expression analysis of PYL genes in response to different concentrations of ABA stress in Glycyrrhiza uralensis [J]. Chin J Nat Med, 2020, 18(8): 606-611. doi: 10.1016/S1875-5364(20)30072-8

Genome-wide identification of abscisic acid (ABA) receptor pyrabactin resistance 1-like protein (PYL) family members and expression analysis of PYL genes in response to different concentrations of ABA stress in Glycyrrhiza uralensis

  • Abstract: As abscisic acid (ABA) receptor, the pyrabactin resistance 1-like (PYR/PYL) protein (named PYL for simplicity) plays an important part to unveil the signal transduction of ABA and its regulatory mechanisms. Glycyrrhiza uralensis, a drought-tolerant medicinal plant, is a good model for the mechanism analysis of ABA response and active compound biosynthesis. However, knowledge about PYL family in G. uralensis remains largely unknown. Here, 10 PYLs were identified in G. uralensis genome. Characterization analysis indicated that PYLs in G. uralensis (GuPYLs) are relatively conserved. Phylogenetic analysis showed that GuPYL1−3 belongs to subfamily I, GuPYL4−6 and GuPYL10 belong to subfamily II and GuPYL7−9 belongs to subfamily III. In addition, transcriptome data presented various expression levels of GuPYLs under different exogenous ABA stresses. The expression pattern of GuPYLs was verified by Quantitative real-time polymerase chain reaction (qRT-PCR). The study proved that GuPYL4, GuPYL5, GuPYL8 and GuPYL9 genes are significantly up-regulated by ABA stress and the response process is dynamic. This study paves the way for elucidating the regulation mechanism of ABA signal to secondary metabolites and improving the cultivation and quality of G. uralensis using agricultural strategies.

     

/

返回文章
返回