Nuciferine alleviates collagen-induced arthritic in rats by inhibiting the proliferation and invasion of human arthritis-derived fibroblast-like synoviocytes and rectifying Th17/Treg imbalance
-
Graphical Abstract
-
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by persistent synovial inflammation and joint degradation, posing challenges in the development of effective treatments. Nuciferine, an alkaloid found in lotus leaf, has shown promising anti-inflammatory and anti-tumor effects, yet its efficacy in RA treatment remains unexplored. This study investigated the antiproliferative effects of nuciferine on the MH7A cell line, a human RA-derived fibroblast-like synoviocyte, revealing its ability to inhibit cell proliferation, promote apoptosis, induce apoptosis, and cause G1/S phase arrest. Additionally, nuciferine significantly reduced the migration and invasion capabilities of MH7A cells. The therapeutic potential of nuciferine was further evaluated in a collagen-induced arthritis (CIA) rat model, where it markedly alleviated joint swelling, synovial hyperplasia, cartilage injury, and inflammatory infiltration. Nuciferine also improved collagen-induced bone erosion, decreased pro-inflammatory cytokines and serum immunoglobulins (IgG, IgG1, IgG2a), and restored the balance between T helper (Th) 17 and regulatory T cells in the spleen of CIA rats. These results indicate that nuciferine may offer therapeutic advantages for RA by decreasing the proliferation and invasiveness of FLS cells and correcting the Th17/Treg cell imbalance in CIA rats.
-
-